Stabilization of Two Radicals with One Metal: A Stepwise Coupling Model for Copper-Catalyzed Radical–Radical Cross-Coupling
نویسندگان
چکیده
Transition metal-catalyzed radical-radical cross-coupling reactions provide innovative methods for C-C and C-heteroatom bond construction. A theoretical study was performed to reveal the mechanism and selectivity of the copper-catalyzed C-N radical-radical cross-coupling reaction. The concerted coupling pathway, in which a C-N bond is formed through the direct nucleophilic addition of a carbon radical to the nitrogen atom of the Cu(II)-N species, is demonstrated to be kinetically unfavorable. The stepwise coupling pathway, which involves the combination of a carbon radical with a Cu(II)-N species before C-N bond formation, is shown to be probable. Both the Mulliken atomic spin density distribution and frontier molecular orbital analysis on the Cu(II)-N intermediate show that the Cu site is more reactive than that of N; thus, the carbon radical preferentially react with the metal center. The chemoselectivity of the cross-coupling is also explained by the differences in electron compatibility of the carbon radical, the nitrogen radical and the Cu(II)-N intermediate. The higher activation free energy for N-N radical-radical homo-coupling is attributed to the mismatch of Cu(II)-N species with the nitrogen radical because the electrophilicity for both is strong.
منابع مشابه
Development of a Method for measuring Reactive Oxygen Radicals Levels In Vitro and Study the Effects of Vitamin C and E on Radical Production Reaction
Background: Free radicals and reactive oxygen species(ROS) are the most important factors in formation of oxidative stress reaction. Now, radical damage has been suggested to contribute to a wide variety of diseases such as Alzheimer, atherosclerosis and cancer. Transition metal ions in the presence of the various biomolecules produce these active compounds. The aim of this study is introducing...
متن کاملRemote C-H Activation of Quinolines through Copper-Catalyzed Radical Cross-Coupling.
Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C-H bonds at the C5 position of 8-aminoquinoline through copper-catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with diffe...
متن کاملTuning the Reactivity of Radical through a Triplet Diradical Cu(II) Intermediate in Radical Oxidative Cross-Coupling
Highly selective radical/radical cross-coupling is paid more attention in bond formations. However, due to their intrinsic active properties, radical species are apt to achieve homo-coupling instead of cross-coupling, which makes the selective cross-coupling as a great challenge and almost untouched. Herein a notable strategy to accomplish direct radical/radical oxidative cross-coupling has bee...
متن کاملCoordinating activation strategy for C(sp3)–H/C(sp3)–H cross-coupling to access β-aromatic α-amino acids
The past decade has witnessed significant advances in C-H bond functionalizations with the discovery of new mechanisms. Non-precious transition-metal-catalysed radical oxidative coupling for C(sp(3))-H bond transformations is an appealing strategy for C-C bond formations. The radical oxidative C(sp(3))-H/C(sp(3))-H cross-coupling reactions of α-C(sp(3))-H bonds of amines with free radicals repr...
متن کاملEnantioselective functionalization of radical intermediates in redox catalysis: copper-catalyzed asymmetric oxytrifluoromethylation of alkenes.
A method for the efficient enantioselective oxytrifluoromethylation of alkenes has been developed using a copper catalyst system. Mechanistic studies are consistent with a metal-catalyzed redox radical addition mechanism, in which a C–O bond is formed via the copper-mediated enantioselective trapping of a prochiral alkyl radical intermediate derived from the initial trifluoromethyl radical addi...
متن کامل